Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

Identifieur interne : 002804 ( Main/Exploration ); précédent : 002803; suivant : 002805

Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

Auteurs : Chad Brocker [États-Unis] ; Melpomene Vasiliou ; Sarah Carpenter ; Christopher Carpenter ; Yucheng Zhang ; Xiping Wang ; Simeon O. Kotchoni ; Andrew J. Wood ; Hans-Hubert Kirch ; David Kope N ; Daniel W. Nebert ; Vasilis Vasiliou

Source :

RBID : pubmed:23007552

Descripteurs français

English descriptors

Abstract

In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.

DOI: 10.1007/s00425-012-1749-0
PubMed: 23007552
PubMed Central: PMC3536936


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.</title>
<author>
<name sortKey="Brocker, Chad" sort="Brocker, Chad" uniqKey="Brocker C" first="Chad" last="Brocker">Chad Brocker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vasiliou, Melpomene" sort="Vasiliou, Melpomene" uniqKey="Vasiliou M" first="Melpomene" last="Vasiliou">Melpomene Vasiliou</name>
</author>
<author>
<name sortKey="Carpenter, Sarah" sort="Carpenter, Sarah" uniqKey="Carpenter S" first="Sarah" last="Carpenter">Sarah Carpenter</name>
</author>
<author>
<name sortKey="Carpenter, Christopher" sort="Carpenter, Christopher" uniqKey="Carpenter C" first="Christopher" last="Carpenter">Christopher Carpenter</name>
</author>
<author>
<name sortKey="Zhang, Yucheng" sort="Zhang, Yucheng" uniqKey="Zhang Y" first="Yucheng" last="Zhang">Yucheng Zhang</name>
</author>
<author>
<name sortKey="Wang, Xiping" sort="Wang, Xiping" uniqKey="Wang X" first="Xiping" last="Wang">Xiping Wang</name>
</author>
<author>
<name sortKey="Kotchoni, Simeon O" sort="Kotchoni, Simeon O" uniqKey="Kotchoni S" first="Simeon O" last="Kotchoni">Simeon O. Kotchoni</name>
</author>
<author>
<name sortKey="Wood, Andrew J" sort="Wood, Andrew J" uniqKey="Wood A" first="Andrew J" last="Wood">Andrew J. Wood</name>
</author>
<author>
<name sortKey="Kirch, Hans Hubert" sort="Kirch, Hans Hubert" uniqKey="Kirch H" first="Hans-Hubert" last="Kirch">Hans-Hubert Kirch</name>
</author>
<author>
<name sortKey="Kope N, David" sort="Kope N, David" uniqKey="Kope N D" first="David" last="Kope N">David Kope N</name>
</author>
<author>
<name sortKey="Nebert, Daniel W" sort="Nebert, Daniel W" uniqKey="Nebert D" first="Daniel W" last="Nebert">Daniel W. Nebert</name>
</author>
<author>
<name sortKey="Vasiliou, Vasilis" sort="Vasiliou, Vasilis" uniqKey="Vasiliou V" first="Vasilis" last="Vasiliou">Vasilis Vasiliou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23007552</idno>
<idno type="pmid">23007552</idno>
<idno type="doi">10.1007/s00425-012-1749-0</idno>
<idno type="pmc">PMC3536936</idno>
<idno type="wicri:Area/Main/Corpus">002876</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002876</idno>
<idno type="wicri:Area/Main/Curation">002876</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002876</idno>
<idno type="wicri:Area/Main/Exploration">002876</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.</title>
<author>
<name sortKey="Brocker, Chad" sort="Brocker, Chad" uniqKey="Brocker C" first="Chad" last="Brocker">Chad Brocker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vasiliou, Melpomene" sort="Vasiliou, Melpomene" uniqKey="Vasiliou M" first="Melpomene" last="Vasiliou">Melpomene Vasiliou</name>
</author>
<author>
<name sortKey="Carpenter, Sarah" sort="Carpenter, Sarah" uniqKey="Carpenter S" first="Sarah" last="Carpenter">Sarah Carpenter</name>
</author>
<author>
<name sortKey="Carpenter, Christopher" sort="Carpenter, Christopher" uniqKey="Carpenter C" first="Christopher" last="Carpenter">Christopher Carpenter</name>
</author>
<author>
<name sortKey="Zhang, Yucheng" sort="Zhang, Yucheng" uniqKey="Zhang Y" first="Yucheng" last="Zhang">Yucheng Zhang</name>
</author>
<author>
<name sortKey="Wang, Xiping" sort="Wang, Xiping" uniqKey="Wang X" first="Xiping" last="Wang">Xiping Wang</name>
</author>
<author>
<name sortKey="Kotchoni, Simeon O" sort="Kotchoni, Simeon O" uniqKey="Kotchoni S" first="Simeon O" last="Kotchoni">Simeon O. Kotchoni</name>
</author>
<author>
<name sortKey="Wood, Andrew J" sort="Wood, Andrew J" uniqKey="Wood A" first="Andrew J" last="Wood">Andrew J. Wood</name>
</author>
<author>
<name sortKey="Kirch, Hans Hubert" sort="Kirch, Hans Hubert" uniqKey="Kirch H" first="Hans-Hubert" last="Kirch">Hans-Hubert Kirch</name>
</author>
<author>
<name sortKey="Kope N, David" sort="Kope N, David" uniqKey="Kope N D" first="David" last="Kope N">David Kope N</name>
</author>
<author>
<name sortKey="Nebert, Daniel W" sort="Nebert, Daniel W" uniqKey="Nebert D" first="Daniel W" last="Nebert">Daniel W. Nebert</name>
</author>
<author>
<name sortKey="Vasiliou, Vasilis" sort="Vasiliou, Vasilis" uniqKey="Vasiliou V" first="Vasilis" last="Vasiliou">Vasilis Vasiliou</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aldehyde Dehydrogenase (genetics)</term>
<term>Aldehyde Dehydrogenase (metabolism)</term>
<term>Aldehydes (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Bryopsida (enzymology)</term>
<term>Bryopsida (genetics)</term>
<term>Chlamydomonas reinhardtii (enzymology)</term>
<term>Chlamydomonas reinhardtii (genetics)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Genomics (methods)</term>
<term>Multigene Family (MeSH)</term>
<term>Oryza (enzymology)</term>
<term>Oryza (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants (classification)</term>
<term>Plants (enzymology)</term>
<term>Plants (genetics)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Selaginellaceae (enzymology)</term>
<term>Selaginellaceae (genetics)</term>
<term>Sorghum (enzymology)</term>
<term>Sorghum (genetics)</term>
<term>Terminology as Topic (MeSH)</term>
<term>Vitis (enzymology)</term>
<term>Vitis (genetics)</term>
<term>Volvox (enzymology)</term>
<term>Volvox (genetics)</term>
<term>Zea mays (enzymology)</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aldehyde dehydrogenase (génétique)</term>
<term>Aldehyde dehydrogenase (métabolisme)</term>
<term>Aldéhydes (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Bryopsida (enzymologie)</term>
<term>Bryopsida (génétique)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chlamydomonas reinhardtii (enzymologie)</term>
<term>Chlamydomonas reinhardtii (génétique)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Famille multigénique (MeSH)</term>
<term>Génome végétal (génétique)</term>
<term>Génomique (méthodes)</term>
<term>Oryza (enzymologie)</term>
<term>Oryza (génétique)</term>
<term>Plantes (classification)</term>
<term>Plantes (enzymologie)</term>
<term>Plantes (génétique)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Selaginellaceae (enzymologie)</term>
<term>Selaginellaceae (génétique)</term>
<term>Sorghum (enzymologie)</term>
<term>Sorghum (génétique)</term>
<term>Terminologie comme sujet (MeSH)</term>
<term>Vitis (enzymologie)</term>
<term>Vitis (génétique)</term>
<term>Volvox (enzymologie)</term>
<term>Volvox (génétique)</term>
<term>Zea mays (enzymologie)</term>
<term>Zea mays (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aldehyde Dehydrogenase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aldehyde Dehydrogenase</term>
<term>Aldehydes</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Chlamydomonas reinhardtii</term>
<term>Oryza</term>
<term>Plantes</term>
<term>Populus</term>
<term>Selaginellaceae</term>
<term>Sorghum</term>
<term>Vitis</term>
<term>Volvox</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Chlamydomonas reinhardtii</term>
<term>Oryza</term>
<term>Plants</term>
<term>Populus</term>
<term>Selaginellaceae</term>
<term>Sorghum</term>
<term>Vitis</term>
<term>Volvox</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Chlamydomonas reinhardtii</term>
<term>Chromosomes, Plant</term>
<term>Genome, Plant</term>
<term>Oryza</term>
<term>Plants</term>
<term>Populus</term>
<term>Selaginellaceae</term>
<term>Sorghum</term>
<term>Vitis</term>
<term>Volvox</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aldehyde dehydrogenase</term>
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Chlamydomonas reinhardtii</term>
<term>Chromosomes de plante</term>
<term>Génome végétal</term>
<term>Oryza</term>
<term>Plantes</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Selaginellaceae</term>
<term>Sorghum</term>
<term>Vitis</term>
<term>Volvox</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aldehyde dehydrogenase</term>
<term>Aldéhydes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chromosome Mapping</term>
<term>Evolution, Molecular</term>
<term>Multigene Family</term>
<term>Terminology as Topic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cartographie chromosomique</term>
<term>Famille multigénique</term>
<term>Terminologie comme sujet</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23007552</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>237</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.</ArticleTitle>
<Pagination>
<MedlinePgn>189-210</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-012-1749-0</ELocationID>
<Abstract>
<AbstractText>In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brocker</LastName>
<ForeName>Chad</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vasiliou</LastName>
<ForeName>Melpomene</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carpenter</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carpenter</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yucheng</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiping</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kotchoni</LastName>
<ForeName>Simeon O</ForeName>
<Initials>SO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wood</LastName>
<ForeName>Andrew J</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kirch</LastName>
<ForeName>Hans-Hubert</ForeName>
<Initials>HH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kopečný</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nebert</LastName>
<ForeName>Daniel W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vasiliou</LastName>
<ForeName>Vasilis</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F31 AA018248</GrantID>
<Acronym>AA</Acronym>
<Agency>NIAAA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY17963</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY011490</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 ES006096</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AA017754</GrantID>
<Acronym>AA</Acronym>
<Agency>NIAAA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY017963</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000447">Aldehydes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.1.3</RegistryNumber>
<NameOfSubstance UI="D000444">Aldehyde Dehydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000444" MajorTopicYN="N">Aldehyde Dehydrogenase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000447" MajorTopicYN="N">Aldehydes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019068" MajorTopicYN="N">Bryopsida</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016825" MajorTopicYN="N">Chlamydomonas reinhardtii</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032503" MajorTopicYN="N">Selaginellaceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045868" MajorTopicYN="N">Sorghum</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009626" MajorTopicYN="N">Terminology as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044446" MajorTopicYN="N">Volvox</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23007552</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-012-1749-0</ArticleId>
<ArticleId IdType="pmc">PMC3536936</ArticleId>
<ArticleId IdType="mid">NIHMS410176</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 Jan;9(1):75-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20497370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Nov;68(4-5):439-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18704694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Feb;235(2):433-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21960163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Nov;68(4-5):451-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18688729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):544-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2008 Oct-Dec;98(1-3):541-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18649006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2005 May;7(3):238-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15912443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Aug;9(8):371-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e32153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Mar 5;396(4):870-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20026072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Dec;267(24):7015-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2004 Jun;22(11):848-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15045523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Dec;28(5):555-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11849595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Feb;45(3):353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Feb;57(3):315-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15830124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacogenetics. 1999 Aug;9(4):421-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10780262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3413-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 Feb 15;431(1-2):86-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19071198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Mar-Apr;48(5-6):751-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11999848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Aug;236(2):525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22437646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2011 Sep;49(9):1005-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21596576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Mar;11(2):119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 May 31;272(5266):1334-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8650543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):905-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 29;457(7229):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Metab Toxicol. 2008 Jun;4(6):697-720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12740438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Mar;53(3):193-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1997 Oct;38(10):1095-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9399433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(10):3887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Biochem Biophys. 2011 Oct;48(5):346-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22165294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(7):e11516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20634950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2000 Dec;48(12):6106-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11312783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biochem. 2009;10:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19320993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Apr 23;449(2-3):153-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10338122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 11;285(24):18452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20207735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Aug;35(4):452-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12904208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Oct 13;2:65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jan;13(1):14-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18155636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2000 May 16;249(1-2):67-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10831839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Apr;113(4):1457-1461</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Feb;233(2):369-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21053011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Feb 27;305(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2009 Jul-Aug;27(4):468-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19371779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2011;2:544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22109518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jul 11;114(1):47-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12859897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2003 Feb 1;143-144:5-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12604184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Nov 15;268(32):23818-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8226918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jun;29(6):1033-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D883-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17145706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Struct Biol. 2010;10:43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21190582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(9):1909-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Aug;27(4):345-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Oct;35(3):355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005;6:43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15784153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Nov 19;583(22):3625-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19850038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2008 Dec;18(6):565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Jul 14;1480(1-2):329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11004571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Mar 10;275(10):7390-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10702312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jul 9;329(5988):223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:185-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2001 Aug;2(8):607-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Aug;52(8):1340-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21690177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Carpenter, Christopher" sort="Carpenter, Christopher" uniqKey="Carpenter C" first="Christopher" last="Carpenter">Christopher Carpenter</name>
<name sortKey="Carpenter, Sarah" sort="Carpenter, Sarah" uniqKey="Carpenter S" first="Sarah" last="Carpenter">Sarah Carpenter</name>
<name sortKey="Kirch, Hans Hubert" sort="Kirch, Hans Hubert" uniqKey="Kirch H" first="Hans-Hubert" last="Kirch">Hans-Hubert Kirch</name>
<name sortKey="Kope N, David" sort="Kope N, David" uniqKey="Kope N D" first="David" last="Kope N">David Kope N</name>
<name sortKey="Kotchoni, Simeon O" sort="Kotchoni, Simeon O" uniqKey="Kotchoni S" first="Simeon O" last="Kotchoni">Simeon O. Kotchoni</name>
<name sortKey="Nebert, Daniel W" sort="Nebert, Daniel W" uniqKey="Nebert D" first="Daniel W" last="Nebert">Daniel W. Nebert</name>
<name sortKey="Vasiliou, Melpomene" sort="Vasiliou, Melpomene" uniqKey="Vasiliou M" first="Melpomene" last="Vasiliou">Melpomene Vasiliou</name>
<name sortKey="Vasiliou, Vasilis" sort="Vasiliou, Vasilis" uniqKey="Vasiliou V" first="Vasilis" last="Vasiliou">Vasilis Vasiliou</name>
<name sortKey="Wang, Xiping" sort="Wang, Xiping" uniqKey="Wang X" first="Xiping" last="Wang">Xiping Wang</name>
<name sortKey="Wood, Andrew J" sort="Wood, Andrew J" uniqKey="Wood A" first="Andrew J" last="Wood">Andrew J. Wood</name>
<name sortKey="Zhang, Yucheng" sort="Zhang, Yucheng" uniqKey="Zhang Y" first="Yucheng" last="Zhang">Yucheng Zhang</name>
</noCountry>
<country name="États-Unis">
<region name="Colorado">
<name sortKey="Brocker, Chad" sort="Brocker, Chad" uniqKey="Brocker C" first="Chad" last="Brocker">Chad Brocker</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002804 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002804 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23007552
   |texte=   Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23007552" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020